Wednesday, 30 May 2018

Block your dates for the upcoming conference on World Congress on Advanced Biomaterials and Tissue Engineering held on October 17-18, 2018 @ Rome, Italy.  Theme of the conference is "Innovations in Biomaterials and Emerging Technologies in Tissue Engineering"


Tuesday, 29 May 2018

Adipose Tissue Repair : 

There is a clear clinical need for cell therapies to repair or regenerate tissue lost to disease or trauma. Adipose tissue is a renewable source of stem cells, called adipose-derived stem cells (ASCs), that release important growth factors for wound healing, modulate the immune system, decrease inflammation, and home in on injured tissues. Therefore, ASCs may offer great clinical utility in regenerative therapies for afflictions such as Parkinson’s disease and Alzheimer’s disease, spinal cord injury, heart disease, and rheumatoid arthritis, or for replacing lost tissue from trauma or tumor removal. the regenerative properties of ASCs that can be harnessed for clinical applications, and explores current and future challenges for ASC clinical use. Such challenges include knowledge-based deficiencies, hurdles for translating research to the clinic, and barriers to establishing a new paradigm of medical care. Clinical experience with ASCs, ASCs as a portion of the heterogeneous stromal cell population extracted enzymatically from adipose tissue, and stromal vascular fraction.

Monday, 28 May 2018

Organ-on-Chip:
Before any medicine can be brought to market, it has to be guaranteed it will not have any harmful effects on the person who takes it. To date health authorities require careful safety assessment, often involving animal models as well. The future, however, shows new ways to make the development of medicines better and faster, moving molecules from the lab directly to the patient. Organs-on-a-Chip technology is a new alternative way to screen drug candidates in a very early stage for efficacy and toxicity. The technology enables researchers to cultivate human cells representing organs under physiological conditions. Multiple organs can be placed on one chip and are interconnected to model the dynamics of a human organism. This is possible because 3D cell culture, micro-fluids and 3D printing technologies allow the cultivation of cells from patients

Friday, 25 May 2018

Tissue Regeneration: 

Tissue engineering (TE) is one of the biomedical technologies developed to assist the regeneration of body tissues to treat large size defects that are not possible to self-repair. TE may also help to substitute the biological functions of damaged organs by making use of cells. Although there is no doubt that cells are important for this purpose, an artificially created site to induce repair of the defect is a key factor for successful tissue regeneration.
This can be achieved only by utilizing an artificial scaffold of 3-dimensional structure for cell proliferation and differentiation as well as growth factors. Growth factors are often required to promote tissue regeneration. They also can induce angiogenesis which is required to supply oxygen and nutrients for the survival of the transplanted cells. However, one cannot always expect the biological effects of growth factors to be fully exerted because of poor in vivo stability, unless growth factor delivery technology is applied. This paper describes recent experimental data on tissue regeneration that emphasize the role of drug delivery technology in tissue engineering, briefly over viewing biodegradable polymers used for this purpose.

Thursday, 24 May 2018

Protein-based tissue engineering in bone and cartilage repair:

Bioactive proteins signal host or transplanted cells to form the desired tissue type. Matrix systems are utilized to locally deliver the proteins and to maintain effective protein concentrations. For some indications, a matrix is required to define the physical form of the regenerated tissue. Substantial progress has been made in bone tissue engineering in recent years, based on the results of controlled clinical studies using bone morphogenetic proteins. Ongoing research in this area centers on the design of additional delivery matrices to expand the clinical indications, using synthetic delivery systems that mimic biological qualities of the natural materials currently in use. Although a similar rationale exists for the regeneration of articular cartilage with bioactive factors, advancement in this area has not been as substantial.

Wednesday, 23 May 2018

In-vitro cell expansion in Tissue Engineering:

In vitro has become an essential step in the process of tissue engineering and also the systematic optimization of culture conditions is now a fundamental problem that needs to be addressed. Herein, a rational methodology for searching culture conditions that optimize the acquisition of large quantities of cells following a sequential expansion process. In particular, the analysis of both seeding density and passage length was considered crucial, and their correct selection should be taken as a requisite to establish culture conditions for monolayer systems. This methodology also introduces additional considerations concerning the running cost of the expansion process. The selection of culture conditions will be a compromise between optimal cell expansion and acceptable running cost. This compromise will normally translate into an increase of passage length further away from the optimal value dictated by the growth kinetic of the cells. Finally, the importance of incorporating functional assays to validate the phenotypical and functional characteristics of the expanded cells has been highlighted. The optimization approach presented will contribute to the development of feasible large scale expansion of cells required by the tissue engineering industry.


Tuesday, 22 May 2018

Biodegradable Metals: 

After decades of developing strategies to minimize the corrosion of metallic biomaterials, there is now an increasing interest to use corrodible metals in a number of medical device applications. The term “biodegradable metal” (BM) has been used worldwide to describe these new kinds of degradable metallic biomaterials for medical applications and there were many new findings reported over the last decade. The recently-developed representative Mg-based BMs (pure Mg, Mg–Ca alloy, Mg–Zn alloy, etc.), Fe-based BMs (pure Fe, Fe–Mn-based alloys, etc.) and other BMs (pure W, pure Zn and its alloys, Ca-based and Sr-based bulk metallic glasses, etc.) were comprehensively reviewed with emphases on their microstructures, mechanical properties and degradation behaviors, in vitro and in vivo performances, pre-clinical and clinical trials. Moreover, current approaches to control their biodegradation rates to match the healing rates of the host tissues with various surface modification techniques and novel structural designs. BM belongs to “bioactive” biomaterials and its future research and development direction should lean towards “third-generation biomedical materials” with “multifunctional capabilities” in a controllable manner to benefit the local tissue reconstruction.

Monday, 21 May 2018

Hydrogel Biomaterials:


Hydrogels are water-swollen polymeric materials that maintain a distinct three-dimensional structure. They were the first biomaterials designed for use in the human body . Traditional methods of biomaterials synthesis include crosslinking copolymerization, crosslinking of reactive polymer precursors, and crosslinking via polymer-polymer reaction. These methods of hydrogel synthesis were limited in the control of their detailed structure. Due to side reactions the networks contain cycles, unreacted pendant groups, and entanglements. Other inadequacies of traditional hydrogels have been poor mechanical properties and slow or delayed response times to external stimuli . Novel approaches in hydrogel design have revitalized this field of biomaterials research. New ideas on the design of hydrogels with substantially enhanced mechanical properties, superporous  and comb-type grafted hydrogels  with fast response times, self-assembling hydrogels from hybrid graft copolymers with property-controlling protein domains, and from genetically engineered triblock copolymers are just a few examples of hydrogel biomaterials with a smart future.




Friday, 18 May 2018

Biodegradable polymers as Biomaterials


Biomaterials are used in prostheses and medical devices for different purposes. Polymers are the most diverse class of biomaterials. All biomaterials must meet certain criteria and regulatory requirements before they can be qualified for use in medical applications. Biocompatibility is one of the most important requirements. Both nondegradable polymers are designed to degrade in vivo in a controlled manner over a predetermined time. The main mechanism of in vivo degradation of polymers is ‘hydrolytic degradation’, in which enzymes may also play a role (i.e. ‘enzymatic degradation’). Both natural e.g., collagen, and synthetic e.g., poly(alpha-hydroxy) acids, biodegradable polymers are used in biomedical applications. Many of the current polymers and processing techniques need to be improved in order to produce polymers with better performance in biological media. An important trend in related research and development is the synthesis of novel polymers, which would exhibit improved biocompatibility, and be bioresponsive.




Thursday, 17 May 2018


The design of biomimetic materials for biomaterials and tissue engineering applications that are capable of eliciting specific cellular responses and directing new tissue formation mediated by biomolecular recognition, which can be manipulated by altering design parameters of the material. Biomolecular recognition of materials by cells has been achieved by surface and bulk modification of biomaterials via chemical or physical methods with bioactive molecules such as a native long chain of extracellular matrix (ECM) proteins as well as short peptide sequences derived from intact ECM proteins that can incur specific interactions with cell receptors. The biomimetic materials potentially mimic many roles of ECM in tissues. For example, biomimetic scaffolds can provide biological cues for cell–matrix interactions to promote tissue growth, and the incorporation of peptide sequences into materials can also make the material degradable by specific protease enzymes. This discusses the surface and bulk modification of biomaterials with cell recognition molecules to design biomimetic materials for tissue engineering. The criteria to design biomimetic materials such as the concentration and spatial distribution of modified bioactive molecules are addressed. Recent advances for the development of biomimetic materials in bone, nerve, and cardiovascular tissue engineering are also summarized.

Wednesday, 16 May 2018


Gene Therapy :

Gene therapy is an experimental technique that uses genes to treat or prevent disease. In the future, this technique may allow doctors to treat a disorder by inserting a gene into a patient’s cells instead of using drugs or surgery. Researchers are testing several approaches to gene therapy, including:
  • ·         Replacing a mutated gene that causes disease with a healthy copy of the gene.
  • ·         Inactivating, or “knocking out,” a mutated gene that is functioning improperly.
  • ·         Introducing a new gene into the body to help fight a disease.

Although gene therapy is a promising treatment option for a number of diseases (including inherited disorders, some types of cancer, and certain viral infections), the technique remains risky and is still under study to make sure that it will be safe and effective. Gene therapy is currently being tested only for diseases that have no other cures.



Tuesday, 15 May 2018


Biomaterials play an important role in Therapeutic Delivery like Biocompatible polymeric gene carriers which have been introduced for treating diverse genetic and acquired diseases. The researchers are working on the biomaterial approaches to significantly improve outcomes of gene #therapies for neurodegenerative disorders. The Nanobiomaterial architecture is the basis for fabrication of novel integrated systems involving cells, growth factors, proteins, cytokines, drug molecules, and other biomolecules with the rationale of creating a universal, all-purpose Nano-biomedical device for personalized therapies.



Sunday, 13 May 2018


Biophotonics:

Biophotonics is an emerging multidisciplinary research area, embracing all light-based technologies applied to the life sciences and medicine. Biophotonics is a scientific discipline of remarkable societal importance. For hundreds of years, researchers have utilized light-based systems to explore the biological basics of life.

Diagnostic Biophotonics:
Diagnostic biophotonics is used to detect diseases in their initial stages before actual medical symptoms occur in patients. By using optics, diagnostic biophotonics provides several advantages of sensing and imaging at the molecular level and also collects multidimensional data for evaluation. Technologies based on light are generally contact-free with less effect on integrity of living subjects and, consequently, can easily be applied in situ.

Therapeutic Biophotonics:
Applications of light include treatment of diseases by altering biological processes. Light is used for modifying the cellular functions photochemically and to remove tissues by photomechanical or photothermal process.